General Practitioners’ Quick Guide to Genetic Haemochromatosis
CONTENTS

Types of Testing for Genetic Haemochromatosis (GH)...4
Normal ranges for serum ferritin and transferrin saturation...4
Genetic counselling...5
Interpretation and management of GH...6
Variants of genetic haemochromatosis...9
What happens when both parents are carriers for genetic haemochromatosis?...10
What happens when one parent is a carrier of genetic haemochromatosis?...10
What happens when one parent has genetic haemochromatosis and the other is a carrier?...11
What happens when both parents have genetic haemochromatosis?...11
What happens when one parent has genetic haemochromatosis?...12
How to request test...13
Types of testing for Genetic Haemochromatosis (GH)

Serum Ferritin (SF) and Transferrin Saturation (TS) should be tested if a patient is presenting with symptoms of iron overload (chronic fatigue, liver disease, cardiomyopathy, diabetes, pituitary/endocrine issues).

If both SF and TS are within normal range (see table below) iron overload is extremely unlikely. If SF and TS are abnormal, genetic testing should be recommended either within primary care or after referral to secondary care. A SF of over 1000 ug/l needs urgent referral to secondary care to exclude liver damage. Referral will need to be to hepatology in this scenario; a scan of the liver to look for iron deposits may be performed.

Normal Ranges | Male | Female

Serum Ferritin (SF) | 15-300µg/l | 15-200µg/l
Transferrin Saturation (TS or TSAT) | 16-50% | 16-45%

Genetic Testing looks for the common genetic mutations which can predispose to GH. This test can indicate the cause of iron loading and/or the likelihood of a patient iron loading in the future. Genetic testing should be offered when there is a family history of the condition or in symptomatic patients.

A patient diagnosed with GH should be offered genetic screening for other first-degree family members, as there is a 1 in 4 chance that a sibling will also have it. As GH is a recessive trait, children of a GH parent will be an obligate carrier with a small risk (5%) of having GH too. Screening frequently leads to detection of GH before organ damage has occurred.

In most areas genetic testing for the common variants (C282Y and H63D) can be requested through the General Practitioner following appropriate discussions and with patient consent. For details of how this can be arranged please contact your local regional genetics service. Local regional genetic services are listed at www.bsgm.org.uk/healthcare-professionals/list-of-genetic-clinics

There are rare forms of HFE-related GH caused by other gene alterations. If GH is still clinically suspected, the patient should be referred to haematology/gastroenterology for further consideration.

Genetic counselling should be offered to families affected by haemochromatosis. Haemochromatosis UK provides free genetic counselling services for members.

For further details: www.haemochromatosis.org.uk/genetic-counselling
<table>
<thead>
<tr>
<th>Result</th>
<th>Interpretation and Management</th>
</tr>
</thead>
</table>
| C282Y Homozygous | **Interpretation**: Patient has 2 copies of the C282Y variant:
- **Symptomatic** → In men: SF>300µg/l, TS >50%, in women: >200µg/l, TS >40%. Refer to secondary care (gastroenterology/haematology) for management and treatment.
- **Asymptomatic** → SF and TS checked annually. Patient could consider blood donation. Dietary advice to limit iron intake may offer some benefit.
Relatives: Biological parents and children will be obligate carriers with a low risk (5%) of being affected. Full siblings will be at a 1 in 4 risk of genetic haemochromatosis. All first-degree relatives (parents, siblings, children over the age of 16*) should be offered genetic testing via their GP. |
| C282Y Carrier (also known as C282Y heterozygote) | **Interpretation**: Patient carries single copy of C282Y variant. Carriers do not usually load iron.
- **Symptomatic** → Consider other causes of Haemochroamtosis. Refer to secondary care for management/treatment. Secondary care may also consider other rarer genetic causes.
- **Asymptomatic** → No further follow up required.
Relatives: At least one biological parent will be a carrier for GH. Children of patient will be at 50% risk of being a carrier. Risk of patient's parent and/or children being affected is small (approximately 3%). Therefore, testing is NOT indicated in healthy individuals. |
| C282Y/H63D Compound Heterozygous | **Interpretation**: Patient carries a single C282Y variant, and a single H63D variant. Most patients with this genotype do not load iron. However, 3 yearly checks of TS and serum ferritin are recommended. Patients should consider blood donation as a precautionary measure as mild iron loading can occur and this is usually without the typical symptoms of GH.
Relatives: Biological parents and children will be obligate carriers for one of the variants, with a low risk (5%) of being affected. All first-degree relatives (parents, siblings, children over the age of 16*) should be offered genetic testing via their GP. |
| H63D Homozygous | **Interpretation**: Patient has 2 copies of the milder H63D variant. Most people with this genotype never develop symptoms or load iron.
- **Symptomatic** → Consider other causes of Haemochroamtosis e.g. obesity and alcohol intake. Refer to secondary care for management/treatment. Secondary care may also consider other rarer genetic causes.
- **Asymptomatic** → No further follow up or monitoring required.
Relatives: Both biological parents and any children will all be obligate carriers of the milder H63D variant. H63D is a milder variant and very rarely causes patients to load iron even when they have 2 copies of the variant (homozygous). Therefore, no testing is recommended for any of the patient's relatives in the absence of any symptoms. |
| H63D Carrier | **Interpretation**: Patient has a single copy of the H63D variant. Carriers of H63D are at a very low risk of iron loading.
- **Symptomatic** → Consider other causes of Haemochroamtosis e.g. obesity and alcohol intake. Refer to secondary care for management/treatment. Secondary care may also consider other rarer genetic causes.
- **Asymptomatic** → No further follow up or monitoring required.
Relatives: At least one biological parent will be a carrier of the milder variant H63D. Siblings and children are at 50% risk of also being a carrier of the H63D variant. As this is a mild variant, in the absence of any symptoms, no testing is recommended. |
| Not a carrier (C282Y not present) | **Interpretation**: Patient does not carry either of the most common variants for GH.
- **Symptomatic** → Consider other causes of Haemochroamtosis e.g. obesity and alcohol intake. Refer to secondary care for management/treatment. Secondary care may also consider other rarer genetic causes.
- **Asymptomatic** → No further follow up or monitoring required.
Relatives: Relatives do not require any genetic testing unless they themselves have an affected relative. |
Variants of Genetic Haemochromatosis

Most people with genetic haemochromatosis have two copies of a variant in the HFE (high iron) gene known as C282Y. They have 2 copies because they inherit one copy from each parent. This is known as C282Y homozygous.

C282Y/H63D Heterozygous

A second, milder variant known as H63D can very occasionally predispose to haemochromatosis. If a person inherits a C282Y variant from one parent and a H63D variant from the other parent, they are known as compound heterozygous (C282Y/H63D). It is rare for people who are compound heterozygous to load iron in amounts that cause organ damage.

H63D/H63D Homozygote

People with two copies of H63D one from each parent. This is sometimes referred to as a H63D homozygote or H63D/H63D. H63D homozygotes are considered to have a very low risk of developing iron overload.

For children under the age of 16, partners can be tested to help inform their risk.

Ensure that affected relative’s name and relationship are indicated on test referral forms.

There are other variants of genetic haemochromatosis that involve other genes, but these are exceptionally rare. Genes alone do not explain why some people go on to load iron and others do not. There are other possible factors (as yet unknown).
What happens when both parents are carriers for genetic haemochromatosis?

When both parents are carriers there is a 1 in 4 (or 25%) risk that any child they have together may inherit a variant from each of them. Meaning each child they have has a 1 in 4 (25%) risk of developing symptoms and iron loading as an adult. This is shown in the diagram below.

Each child has a 1 in 4 risk of developing iron overload, a 2 in 4 chance of being a carrier and a 2 in 4 chance of being unaffected entirely/not a carrier.

What happens when one parent is a carrier of genetic haemochromatosis?

Each child has a 2 in 4 risk of developing iron overload and a 2 in 4 chance of being a carrier.

What happens when both parents have genetic haemochromatosis?

Each child is at risk of developing iron overload.

What happens when one parent has genetic haemochromatosis and the other is a carrier?

Each child has a 2 in 4 risk of developing iron overload and a 2 in 4 chance of being a carrier.
Each child will be a carrier.

Children

As GH is an adult on set condition testing is not recommended in the absence of symptoms before the age of 16. This allows for young adults to make their own informed decision about testing.

How to request a test

Regional testing labs have different test referrals systems. Some are able to accept electronic referrals, whilst others require paper referral forms (usually available at their websites). Blood sample should be 5ml EDTA. Ensure that the affected relatives name and relationship are indicated on the referral form.
This guide was written by Helen Bethell (Registered Genetic Counsellor, Haemochromatosis UK) and Neil McClements (Chief Executive, Haemochromatosis UK) with contributions by the Haemochromatosis UK Clinical Advisory Panel. We gratefully acknowledge the support of our Friends Against Iron Overload in producing these materials.

Become a Friend Against Iron Overload here: www.haemochromatosis.org.uk/friends-against-iron-overload

The information contained within this guide is not intended to provide clinical diagnosis and medical advice. It should not be treated as such. Always seek the advice of your doctor or a health care professional before starting any new treatment for your underlying condition. Whilst we have taken every care to compile accurate information to reflect the current state of knowledge, we cannot guarantee its correctness and completeness. The information provided in this guide does not constitute business, medical or other professional advice, and is subject to change. In no event will Haemochromatosis UK or any of the contributors be responsible or liable directly or indirectly, for damages or liabilities relating in any way to the use (or misuse) of information contained within or referred to in this guide.

Haemochromatosis UK is a charity registered in England and Wales (1001307) and in Scotland (SC041701) and a Company Limited by Guarantee (2541361).

Edition: GPQUICK01 // Released: September 2020
Contact us

We work to support anyone affected by genetic haemochromatosis.

Join us – together we’re stronger
Become a member – signup on our website.

Haemochromatosis UK Advice & Help Line
Telephone (12-3pm weekdays): 03030 401 102
Email (24/7): helpline@huk.org.uk

Website: www.haemochromatosis.org.uk